a2 United States Patent
Wade et al.

US009183130B2

US 9,183,130 B2
*Nov. 10, 2015

(10) Patent No.:
(45) Date of Patent:

(54) DATA CONTROL SYSTEM FOR VIRTUAL

ENVIRONMENT

(71) Applicant: Quantum Corporation, San Jose, CA
(US)

(72) Inventors: Gregory L. Wade, San Jose, CA (US);
J. Mitchell Haile, Somerville, MA (US)

(73) Assignee: Quantum Corporation, San Jose, CA
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.
This patent is subject to a terminal dis-
claimer.

(21) Appl. No.: 14/256,964

(22) Filed: Apr. 19, 2014

(65) Prior Publication Data
US 2014/0229691 A1l Aug. 14,2014

Related U.S. Application Data

(63) Continuation of application No. 13/406,333, filed on
Feb. 27,2012, now Pat. No. 8,707,005.

(60) Provisional application No. 61/446,866, filed on Feb.
25, 2011, provisional application No. 61/476,499,
filed on Apr. 18, 2011, provisional application No.
61/478,497, filed on Apr. 23, 2011.

(51) Imt.ClL
GO6F 12/02 (2006.01)

GO6F 3/06 (2006.01)

GO6F 9/455 (2006.01)

GO6F 12/12 (2006.01)
1102~

(52) US.CL
CPCcc..... GOG6F 12/023 (2013.01); GO6F 3/061
(2013.01); GOGF 3/064 (2013.01); GOGF
3/0664 (2013.01); GO6F 3/0671 (2013.01);
GO6F 9/45558 (2013.01); GOGF 12/121
(2013.01); GOGF 2009/45579 (2013.01)
(58) Field of Classification Search

CPC .ottt GOG6F 9/45558
USPC ottt 711/159
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,447,854 B1 112008 Cannon

7,743,028 Bl 6/2010 Stringham et al.
2002/0091670 Al 7/2002 Hitz et al.
2008/0104353 Al 5/2008 Madisetti
2008/0134196 Al 6/2008 Madriles et al.
2009/0240904 Al 9/2009 Austruy et al.

Primary Examiner — Cheng-Yuan Tseng
Assistant Examiner — Zubair Ahmed

(57) ABSTRACT

A data control system comprises a communication interface,
a processing system, and a storage system. The communica-
tion interface is configured to receive a request to retrieve data
from a primary storage volume that includes a secondary
storage volume. The storage system is configured to store the
primary storage volume that includes the secondary storage
volume. The processing system is configured to identify
changed segments of a plurality of segments in the primary
storage volume and identify allocated segments of the
changed segments. The communication interface is further
configured to transfer the allocated segments in response to
the request.

20 Claims, 13 Drawing Sheets

(1100

1104

1106

1108

1110

RECEIVE A REQUEST TO OPEN A V-DISK FILE

- !

OPEN THE V-DISK FILE AND IDENTIFY NON-LIVE DATA ITEMS OF THE
PLURALITY OF DATA ITEMS ON THE VIRTUAL DRIVES

- !

DELETE THE IDENTIFIED NON-LIVE DATA ITEMS AND CLOSE THE V-DISK FILE
TO FLUSH CHANGES

\ !

OPEN THE V-DISK FILE AND READ ACTIVE BLOCKS

- !

TRANSFER THE ACTIVE BLOCKS TO THE DATA UTILITY

US 9,183,130 B2

Sheet 1 of 13

Nov. 10, 2015

U.S. Patent

ASNOJSTY
vivdad

1S3N03Y
vivdad

001

I 3dN9I4

o7 901 701

<+— Z1NUON SININD3S SW3LlVLiva
2 |F—-—————q4 - - — — — =

SOt ot
10V JNNTOA JNNTOA
—»| NILSAS IOVHOLS IOVHOLS
ONISSIADOHd AMVINIYC A¥VYANOD3S

U.S. Patent Nov. 10, 2015 Sheet 2 of 13 US 9,183,130 B2

(— 200

202
RECEIVE A REQUEST TO RETRIEVE DATA FROM A PRIMARY STORAGE
VOLUME
204 —~ *

IDENTIFY CHANGED SEGMENTS OF A PLURALITY OF SEGMENTS IN THE
PRIMARY STORAGE VOLUME

206 —~ i
IDENTIFY ALLOCATED SEGMENTS OF THE CHANGED SEGMENTS

TRANSFER THE IDENTIFIED SEGMENTS IN RESPONSE TO THE REQUEST

FIGURE 2A

(-210

RECEIVE A REQUEST TO RETRIEVE DATA FROM A PRIMARY STORAGE
VOLUME THAT INCLUDES A SECONDARY STORAGE VOLUME

212 ~

214 — ¢

IDENTIFY CHANGED SEGMENTS OF A PLURALITY OF SEGMENTS IN THE
PRIMARY STORAGE VOLUME

IDENTIFY ALLOCATED SEGMENTS OF THE CHANGED SEGMENTS BASED ON
AN ALLOCATION STATUS OF A PLURALITY OF DATA ITEMS CONTAINED IN
THE SECONDARY STORAGE VOLUME, WHEREIN THE PLURALITY OF DATA

ITEMS CORRESPOND TO THE CHANGED SEGMENTS

218 ~ ¢
TRANSFER THE ALLOCATED SEGMENTS IN RESPONSE TO THE REQUEST

FIGURE 2B

US 9,183,130 B2

Sheet 3 of 13

Nov. 10, 2015

U.S. Patent

€ 34N9Old

V 'ISNOJSTY 4—

a'0'g’Vv :1S3IN0IY —p

10€
NILSAS
ONISSIO0Hd

— 0€ N3LSAS 3OVHOLS

00€

GOE JOSINYAdAH

1 s|e |1 | H|o|4]3 | a|oks
05t (443 BIE
31NAON-0d | FTAMSIA-A | 314 ¥SIT-A
BTE TYyIHdINAd = |
| GlLe _
— FIVMHVH [|
ZT€ ¥OSSI00Ud | avnuain _
_ eTe _
e | za fiay | Asio1sano [|
97¢ _
INNTOA 508 _
JOVHOLS | INIHOVIN TVNLYIA |
WNLYIA 1 _
413
V.LVAV.LIN

$0€ 1S X009
J3ONVHO

0c¢ 319v.L
ONIddVIN X009

US 9,183,130 B2

Sheet 4 of 13

Nov. 10, 2015

U.S. Patent

¥ 34NOIld

ca a
ca

cd JIONVHD d

Amw7 nmm ayoold [———-
1a v
AIONVHD
3Ll v M2079 SY901g
M09

viva AIONVHD

US 9,183,130 B2

Sheet 5 0of 13

Nov. 10, 2015

U.S. Patent

0cs
JANNTOA VL1Vd

0 B
3|31ajo |8 fy]

G 34NOId

¢ LLS
1S1ITX0019-0

]2
JTNACKN

-

I s
1242028

> 2d

2%
JTNACKN

G2s 31avl
ONIddVIN MOOT9

SM0019-0
avad

00§ l\

X009 TINN

——

01e
INILSAS

vivdad

TOHLNOD

STINJo el
0€s
JANNTOA VL1Vd

(0ZS INNTOA V.LVA HO4)
G0S 1S3NOIY V.1va

US 9,183,130 B2

Sheet 6 of 13

Nov. 10, 2015

U.S. Patent

9 34NOId

SY00719d T1NN IHL ANV SY0019 ad3141TvNO IHL
ONISIHdNOD V.1va 40 JNNTOA ANODS V d34SNVHL

% 219

3TNAOCIN X009 11NN WOHL SYO019 ONINIVINTS avad

% 019

v1va 40 JANTOA
1SdId IHL NOY4 sMO019 a3IdITvNO 40 1SI173HL dv3ad

» N~ 809

SX007149 a314IMvNO 40 1SV
1ONHLSNOD O1 SYO01d V1va 4O ALITvdN1d 3IHL 431714

* N~ 909

JAIT F49V LVHL SY00719 V.1vad 3SIHddINOD
S20019 A3I41TVND IHL NIFHIHM ‘SMDO01d vV1va 40
ALITVENTd 1Sd14 FHL 40 SX00719 a3IdITVNO AdILN3Al

» N~ 109

SMO0Td vLvad 40 ALITVENTd LSHId V ONIAVH V1vd
40 FNNTOA 1LSHId ¥V HO4 1S3ND3Y N3JO V1vad IAIFO3

N Z09

009 \

US 9,183,130 B2

Sheet 7 of 13

Nov. 10, 2015

U.S. Patent

d® O ‘N ‘N:ISNOJS3IY A|_

Z 3¥N9OId

61 MSIA-A ‘1SINOIH —hy

10Z
WNILSAS
ONISS300Yd

— 0L W3LSAS IOVHOLS

167
1SITX00719-0

004

T |

0/ JOSINYIdAH

il

et | Hlof4]3 | a]ofafv:
0%Z 62l 12
3INAOW-0d | FTI4 MSIA-A | 3714 MSIA-A
8TZ TvH3HdIN3d '] |
_ Sz
— IUVYMAYVH
ZTZ 40SS300¥d | IVNLYIA
SN _ (72
ea | za fiay | A sio1s3ne
otz
INNTOA 607
3OVHOLS | INIHOVIN TYNLYIA
IVNLYIA L I
Cz
V.LVav1l3In

$0Z LSIT 00719
A3ONVHO

02 31avl
ONIddVIN MOO19

US 9,183,130 B2

Sheet 8 of 13

Nov. 10, 2015

U.S. Patent

LININNOHIANST
JOVHOLS
vivd

8 3dNOld

S B
Ran T Ml S

128 INNTOA

JOVHOLS AYVANOD3S

028
1ININNOHIANT IOVHOLS

618
JTNAON

od

018
INILSAS
TOHLNOD
vivdad

G08
<€4— NOILONYLSNI

US 9,183,130 B2

Sheet 9 of 13

Nov. 10, 2015

U.S. Patent

6 34NOIld

SW3Ll vivad 3HL 40 13SdNS V 40 HOV3 NO NOI1Lvd3dO

AHVANOODIS vV 31NO3X3 ANV SINTLI V1vad FHL 40 HOV3 40 SNLVLS V ONINING313A

A9 NOILVHIdO ALVINIAd IHL NI 3IATOANI SMO0TE 40 ALITVENTd IHL

30NA3Y ‘NOILYHIHO AYVINIYNC FHL FLVILINI OL NOILONYLSNI IHL OL ASNOLSIYH NI

q

N~ 106

JNNTOA FOVHOLS AUVINI-EL

IHL NIHLIM INNTO0A 3OVHOLS AYVANOOI3S V NI SWALI v1vad 40 ALIMvdNd
V OL ONIANOdSIHHOD SMO01d 40 ALITVANTId V ONISIHdINOD FNNTOA 3OVHOLS
AHVINIEd V NO NOILVHIdO AYVINIEd V 3LVILINI OL NOILONYLSNI NV JAIF03d

006 |\

206

US 9,183,130 B2

Sheet 10 of 13

Nov. 10, 2015

U.S. Patent

0l 3dNOId

1c0l
IANIHOVIA V3

¢c0l JOSINYAdAH

(AS AMVINIYC) e v
€201 MSIa-A 0ror S
WILSAS Ov0l
> [> HOMLNOD <4—P| ALIILN
9 yf | v1va vivd
(SAS AYVYANODIS) < a q _
| |
N v J\ v J _
|
APZ0L IAINA ._<:E_>.\ \ _
X¥201 IAINA TVYNLHIA _
|
|
| |
20T INIFWNOHIANT WILSAS TVNLYIA _
r-——— == —— == | R_ o001
INIWNOHIANT
JOVHOLS
v1ivdad

US 9,183,130 B2

Sheet 11 of 13

Nov. 10, 2015

U.S. Patent

L1 3dNOId

ALMILN VLVA FHL O1 SMO0T149 JAILOV FHL H34SNVHL

i

SMO0T9 IAILOV AvId ANV 3714 MSId-A 3HL N3dO

i

SIONVHO HSN14 OL

3714 MSIA-A IHL 3SOT0 ANV SWALI V1vd IAIT-NON d3141LN3Al IHL 31373d

i

[

S3IAIEA TVNLAHIA 3HL NO SW3LI v1vd 40 ALITvAN1d
3HL 40 SNA1l V1vad IAIT-NON AJILNIAI ANV 31714 MSIA-A 3HL N3dO

i

3714 MSIA-A ¥ NIdO OL 1S3N0TY V IAIFOTY

oLLL

8011

9011

oLl

ooil\

N—=2Z0L1

US 9,183,130 B2

Sheet 12 of 13

Nov. 10, 2015

U.S. Patent

¢l 3dN9I4

a® O ‘ISNOJSTH & 10Cl

W3ILSAS — 0¢1 W3ALSAS IADVHOLS
61ZL MSIA-A 1 LSINOTE—P} o N|ISSTDON

GOCl JOSINGIdAH

e |1 | H|9|4]3 | a|oks

0scl 6ccl 6lcl
JTNAON-0A | JTdMSIA-A | F1d MSIA-A

r0cl 1SI71XM0014d
A3IONVYHO

x4 S ETIEINEE _ p— _
| sH4) |
ITZT H0SS300Nd o [0
IVNLAIA =
_ _ Ocel 31avL
g | (%A% | ONIddVIN MO01d
ea | za Fiad | Asio1sano| |
oy _
JNNTOA 601 _
3OVH0lLS | INIHOVIN TYNLYIA |
» TIVNLYHIA L _
002} —
A%4)
VLVaV.3N

US 9,183,130 B2

Sheet 13 of 13

Nov. 10, 2015

U.S. Patent

€1 3dNOld

0€1 INTLSAS TOHLINOD V1vd

L€L W3LSAS ONISS3O0dd

P1E€L WILSAS FOVHOLS

GLEL FHVMLL0S

ol€l
37NAOCN Od

clel
4/143snN

LIEL
4/
‘NWNOD

US 9,183,130 B2

1
DATA CONTROL SYSTEM FOR VIRTUAL
ENVIRONMENT

RELATED APPLICATIONS

This application is a continuation of U.S. Pat. No. 8,707,
005, entitled “DATA CONTROL SYSTEMS FOR VIRTUAL
ENVIRONMENTS,” filed on Feb. 27, 2012; which is related
to and claims priority to U.S. Provisional Patent Application
No. 61/446,866 entitled “DATA CONTROL SYSTEM FOR
VIRTUAL ENVIRONMENT” filed on Feb. 25, 2011, U.S.
Provisional Patent Application No. 61/476,499 entitled
“DATA CONTROL SYSTEM FOR VIRTUAL ENVIRON-
MENT” filed on Apr. 18, 2011, and U.S. Provisional Patent
Application No. 61/478,497 entitled “DATA CONTROL
SYSTEM FOR VIRTUAL ENVIRONMENT” filed on Apr.
23, 2011, which are all hereby incorporated by reference in
their entirety.

TECHNICAL BACKGROUND

In the field of computer hardware and software technology,
a virtual machine is a software implementation of a machine
(computer) that executes program instructions like a real
machine. Virtual machine technology allows for the sharing
of, between multiple virtual machines, the physical resources
underlying the virtual machines.

In virtual machine environments, a hypervisor running on
a host hardware system creates a virtual system on which a
guest operating system may execute. The virtual system
includes a virtual storage volume on which the guest operat-
ing system stores its data. For example, the hypervisor may
simulate a hard disk for the guest operating system that the
hypervisor stores as a virtual disk file on the host system.
Some hypervisors continually track and record changes to the
virtual disk file in a changed block list.

A virtual storage volume within a virtual machine contains
data items that need to be accessed and scanned. In most
cases, accessing the underlying contents of a storage volume
can be very resource-intensive, reducing the performance of a
virtual machine and other operations within a virtual machine
environment.

OVERVIEW

Disclosed is a data control system, a method of operating a
data control system, and one or more computer-readable stor-
age media that, when executed by the data control system,
direct the data control system to operate as described herein.

In an embodiment, a method comprises receiving a request
to retrieve data from a primary storage volume that includes a
secondary storage volume, identifying changed segments of a
plurality of segments in the primary storage volume, identi-
fying allocated segments of the changed segments based on
an allocation status of a plurality of data items contained in
the secondary storage volume, wherein the plurality of data
items correspond to the changed segments, and transferring
the allocated segments in response to the request.

In some embodiments, the method further comprises gen-
erating a list of qualified blocks based on the allocated seg-
ments of the changed segments identified in the primary
storage volume.

In some embodiments, the method further comprises read-
ing a plurality of data blocks from the primary storage volume
based on the list of qualified blocks.

10

15

20

25

30

35

40

45

50

55

60

65

2

In some embodiments, the primary storage volume com-
prises a plurality of blocks corresponding to a plurality of data
items in a secondary storage volume within the primary stor-
age volume.

In some embodiments, the method further comprises, in
response to the request to retrieve the data from the primary
storage volume, determining a subset of the plurality of data
items that are not live based on the allocated segments of the
changed segments identified in the primary storage volume,
and executing an operation on the subset of the data items to
reduce an amount of the plurality of blocks involved in
retrieving the data.

In some embodiments, executing the operation on the sub-
set of the data items to reduce the amount of the plurality of
blocks involved in retrieving the data comprises deleting each
data item of the subset of the data items.

In some embodiments, the method further comprises flush-
ing changes to the secondary storage volume after deleting
each data item of the subset of the data items.

In some embodiments, the primary storage volume
includes a secondary storage volume stored thereon, and
identifying the allocated segments of the changed segments
comprises identifying the allocated segments of the changed
segments based on an allocation status of a plurality of data
items contained in the secondary storage volume, wherein the
plurality of data items correspond to the changed segments.

In another embodiment, a data control system comprises a
communication interface, a processing system, and a storage
system. The communication interface is configured to receive
a request to retrieve data from a primary storage volume that
includes a secondary storage volume. The storage system is
configured to store the primary storage volume that includes
the secondary storage volume. The processing system is con-
figured to identify changed segments of a plurality of seg-
ments in the primary storage volume and identify allocated
segments of the changed segments. The communication inter-
face is further configured to transfer the allocated segments in
response to the request.

In another embodiment, one or more computer-readable
storage media have program instructions stored thereon for
operating a data control system. The program instructions,
when executed by the data control system, direct the data
control system to receive a request to retrieve data from a
primary storage volume. The program instructions further
direct the data control system to identify changed segments of
a plurality of segments in the primary storage volume, and to
identify allocated segments of the changed segments. The
program instructions further direct the data control system to
transfer the allocated segments in response to the request.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a data control system.

FIGS. 2A and 2B illustrate operations of a data control
system.

FIG. 3 illustrates a data control system in an embodiment
wherein a data identification module operates to identify seg-
ments in a primary storage volume.

FIG. 4 illustrates a block mapping table.

FIG. 5 illustrates a data control system in a data transport
environment.

FIG. 6 illustrates an operation of a data control system in a
data transport environment.

FIG. 7 illustrates a data control system in a virtual system
environment.

FIG. 8 illustrates a data control system in a data storage
environment.

US 9,183,130 B2

3

FIG. 9 illustrates an operation of a data control system in a
data storage environment.

FIG. 10 illustrates a data control system in a data storage
environment.

FIG. 11 illustrates an operation of a data control system in
a data storage environment.

FIG. 12 illustrates a data control system in a virtual system
environment.

FIG. 13 illustrates a data control system in an exemplary
embodiment.

DETAILED DESCRIPTION

The following description and associated figures teach the
best mode ofthe invention. For the purpose of teaching inven-
tive principles, some conventional aspects of the best mode
may be simplified or omitted. The following claims specify
the scope of the invention. Note that some aspects of the best
mode may not fall within the scope of the invention as speci-
fied by the claims. Thus, those skilled in the art will appreciate
variations from the best mode that fall within the scope of the
invention. Those skilled in the art will appreciate that the
features described below can be combined in various ways to
form multiple variations of the invention. As a result, the
invention is not limited to the specific examples described
below, but only by the claims and their equivalents.

Described herein are techniques for reducing storage /O
when performing maintenance tasks such as backup, replica-
tion, or migration of virtual machines. By leveraging these
methods, data systems can alleviate unnecessary reads from
an underlying or primary storage volume and read only the
segments required to perform the required maintenance tasks.

In particular, the systems and methods disclosed herein
identify changed and live segments. The changed segments
are determined using a changed block list that is typically
managed by a hypervisor. The corresponding live segments
are determined by identifying corresponding parts of the vir-
tual machine disk file and determining whether those corre-
sponding parts are live. This task is typically accomplished by
reading file system metadata from the Guest OS running on
the virtual machine. Parts of the virtual machine disk file that
are live are those parts that are in-use and not redundant. In
this manner, the number of segments read from the primary
storage volume is limited to those segments that have changed
and are live.

FIG. 1 illustrates data control system 100 according to an
example whereby data control (DC) module 102 is imple-
mented in order to identify segments in a primary storage
volume. Data control system 100 includes processing system
101, DC module 102, secondary storage volume 103, and
primary storage volume 105.

Processing system 101 comprises any system or collection
of systems capable of executing DC module 102 to identify
segments in primary storage volume 105. Processing system
101 may be a microprocessor, an application specific inte-
grated circuit, a general purpose computer, a server computer,
or any combination or variation thereof. DC module 102 may
be program instructions executable by processing system
101.

Primary and secondary storage volumes 105 and 103,
respectively, may be any storage volumes capable of storing a
volume of data. Primary storage volume 105 comprises seg-
ments 106. Secondary storage volume 103 comprises data
items 104. A data item may be, for example, a file. Data items
104 comprise the volume of data in secondary storage volume
103. Segments 106 comprise sections of a volume of data in
primary storage volume 105.

10

15

20

25

30

35

40

45

50

55

60

65

4

Secondary storage volume 103 may be a virtual storage
volume on a virtual machine and data items 104 may com-
prise the virtual storage contents of secondary storage volume
103. Secondary storage volume 103 is itself stored within
primary storage volume 105. Primary storage volume 105
may be a virtual disk file. The virtual disk file comprises a
volume of data that represents the contents of a virtual
machine. Segments 106 may comprise sections of the volume
of data in storage volume 105.

In operation, processing system 101 running DC module
102 and/or primary storage volume 105 track segments 106 of
the data volume in storage volume 105 that have changed.
Similarly, processing system 101 running DC module 102
and/or secondary storage volume 103 track whether data
items 104 are live. Processing system 101 running DC mod-
ule 102 then identifies and transfers those segments that are
both live and have changed in response to a request to retrieve
data.

FIG. 2A illustrates process 200 describing the operation of
data control system 100 according to an example. To begin,
one or more volumes of data are generated and stored. Pro-
cessing system 101 receives a request to retrieve data from
primary storage volume 105 (Step 202). Processing system
101 running DC module 102 subsequently identifies changed
segments of a plurality of segments 106 in primary storage
volume 105 (Step 204). Processing system 101 running DC
module 102 then identifies allocated segments of the changed
segments (Step 206) and transfers the identified segments in
response to the request (Step 208). Each segment in primary
storage volume can be changed or not changed and allocated
(live) or free. Advantageously, this method provides fora way
to limit the number of segments read as only those segments
that have changed and are allocated are read and/or trans-
ferred.

FIG. 2B illustrates process 210 describing the operation of
data control system 100 according to another example. To
begin, one or more volumes of data is generated and stored.
Processing system 101 receives a request to retrieve data from
primary storage volume 105 that includes secondary storage
volume 103 (Step 212). For example, processing system 101
running DC module 102 may receive arequest to retrieve data
representing a virtual machine or virtual appliance. In this
case, primary storage volume 105 comprises a virtual disk file
which further comprises the volume of data that represents a
virtual machine. Secondary storage volume 103 comprises a
virtual storage volume on the virtual machine.

Processing system 101 running DC module 102 subse-
quently identifies changed segments of a plurality of seg-
ments 106 in primary storage volume 105 (Step 214). For
example, in response to the request to retrieve the volume of
data from primary storage volume 105, processing system
101 running DC module 102 obtains a change segment list
from a hypervisor and processes the change segment list to
identify the segments of segments 106 in primary storage
volume 105 that have changed. In this case, the change seg-
ment list is obtained from and managed by a hypervisor on
which the virtual machine (corresponding to the v-disk file) is
running. Other elements may alternatively or additionally
manage the change segment list.

Processing system 101 running DC module 102 then iden-
tifies allocated segments of the changed segments based on an
allocation status of a plurality of data items contained in
secondary storage volume 103, wherein the plurality of data
items correspond to the changed segments (Step 216). For
example, processing system 101 running DC module 102
reads the file system metadata from the Guest OS on the
virtual machine to determine which parts of secondary stor-

US 9,183,130 B2

5

age volume 103 are redundant or no longer in use. More
specifically, processing system 101 running DC module 102
identifies the data items of data items 104 that correspond to
the changed segments and filters out those data items that are
not live. The file metadata may represent the status of the data
items which may be stored in a file system having any number
of formats such as, for example, FAT, NTFS, HFS, UFS, ext2,
ext3, ext4, VMFS, and the like.

In other examples, processing system 101 running DC
module 102 reads the file system metadata from locations
other than the Guest OS such as a Guest Application running
on the virtual machine or another entity within the virtual
machine. Moreover, in some examples, processing system
101 running DC module 102 may determine the allocation
status using the hypervisor or other software on storage sys-
tem 303.

By filtering out those data items that are not live (e.g., those
data items that are redundant or no longer in use by the Guest
O/S), processing system 101 running DC module 102 is left
with those changed segments that also correspond to live data
items. Lastly, processing system 102 transfers the allocated
segments in response to the request (Step 218). Those skilled
in the art will appreciate that the transfers, as referred to
herein, are typically not literal transfers. Rather, a version of
the segments may be transferred or copied. However, in some
embodiments, the segments may literally be transferred.

Those skilled in art will also appreciate that data requests
may be used for a variety of applications and/or data utilities.
For example, a data utility may make the data request in order
to backup, replicate, or migrate virtual machines. Similarly,
the data utility may make the request to scan the data for
viruses, to identify changed data items for computer or data
forensics, for compliance needs, or in order to log system
changes. It should be understood that data the request may be
made by a human operator or another software application,
hardware element, or the like.

FIG. 3 illustrates data control system 300 in an embodi-
ment wherein data control module 350 operates to identify
segments in primary storage volume and transfer those seg-
ments. In this example, data storage system 300 includes
processing system 301, and storage system 303. Hypervisor
305 runs on storage system 303. Virtual disk files 319 and 329
and DC module 350 run on hypervisor 305. As shown, DC
module 350 runs on hypervisor 305, however in some
embodiments, DC module 305 may run directly on storage
system 303 or on another hypervisor (not shown) running on
storage system 303 or another storage system (not shown).

Hypervisor 305 keeps track of those segments that have
changed using a changed block list 304. In this example,
segments are equivalent to blocks. The changed block list
describes the blocks that have changed in virtual disk files 319
and 329. In some example, hypervisor 305 generates changed
block list 304. Those skilled in the art will appreciate that
changed block list 304 may alternatively or additionally be
generated by any entity within virtual machine 309 (such as
guest operating system 313), processing system 301, and/or
storage system 303. Moreover, changed block list 304 may be
generated by replication software, continuous data protection
(CDP) software, or virtual disk change block tracking soft-
ware running on virtual machine 309, hypervisor 305, or
processing system 301.

Virtual disk files 319 and 329 may be, for example,
VMWare images (.vmdk files), VirtualBox images (.vdi
files), Virtual Hard Disk images (.vhd), and/or other image
format files, including combinations thereof. Virtual disk files
319 and 329 include block mapping tables. Block mapping
table 320 describes the storage of the data volume in virtual

10

15

20

25

30

35

40

45

50

55

60

65

6

disk file 319. For example, block mapping table 320 may
describe the correspondence between data items on virtual
storage volume 316 and underlying virtual disk file 319.
Block mapping table 320 is shown with more detail in FIG. 4.

As discussed, hypervisor 305 includes virtual machines
represented by v-disk files 319 and 329. In particular, v-disk
file 319 represents virtual machine 309. Virtual machine 309
includes guest operating system 313 and virtual hardware
315. Guest operating system 313 includes metadata 312. Vir-
tual hardware 315 includes virtual storage volume 316, vir-
tual processor 317, and virtual peripheral 318.

In operation, processing system 301, executing software
including DC module 350, identifies and transfers live and
changed segments corresponding to requested segments. As
shown in this example, processing system 301 receives a
request to retrieve data from virtual disk file 319. In particular,
in this example, all of the segments of virtual disk file 319 are
requested (i.e., segments A, B, C, and D).

Processing system 301 executing DC module 350 first
identifies changed segments of the plurality of segments in
the primary storage volume. In this example, the primary
storage volume comprises virtual disk file 319. The changed
block list 304 indicates that blocks A and B have changed.

Processing system 301 executing DC module 350 subse-
quently identifies allocated segments of the identified
changed segments based on an allocation status of a plurality
of data items contained in virtual storage volume 316,
wherein the plurality of data items correspond to the changed
segments. The block mapping table 320 and metadata 312 are
accessed to accomplish this task. For example, FIG. 4 illus-
trates that changed block A corresponds to data item D1 and
changed block B corresponds to data item D2. Metadata 320
is accessed from guest operating system 313 to determine the
allocation status of data items D1 and D2. In this example,
only D1 is allocated or live, and thus only segment A is both
changed and allocated. Processing system 301 executing DC
module 305 then transfers segment A in response to the
request.

Advantageously, DC module 350 understands the multiple
layers of data in a control system 300 as a group and when
reading the virtual machines (segments from virtual disk
representing the virtual machine data), only the data actually
in use at the time of the read is transferred. This is the case
regardless of whether the data block was previously in use or
changed. The software reading the virtual disk, whether it be
a backup agent or a replication tool, still receives a standard
virtual disk-formatted data stream, but the stream has been
scrubbed clean of random data. This process increases WAN
throughput, compression, and/or de-duplication activities
that occur after reading the virtual machine.

FIGS. 5 through 7 describe techniques for reducing storage
1/0 when performing tasks such as backup, replication, or
migration of virtual machine data. By leveraging these meth-
ods, data systems can alleviate unnecessary reads from a data
volume and read only data blocks required to perform the
required tasks. More specifically, qualified blocks in a data
volume are identified in order to generate a qualified block
list. The qualified block list identifies qualified blocks (e.g.,
those blocks that are “live” or allocated in the data volume). In
this manner, the number of data blocks read from the data
volume is limited to qualified blocks identified in the qualified
block list.

FIG. 5 illustrates data control system 510 in data transport
environment 500. Data transport environment 500 includes
data request 505, data control system 510, data volume 520,
and data volume 525. Data control system 510 includes null

US 9,183,130 B2

7

block module 514, DC module 515, and qualified block
(Q-block) list 517. Data volume 520 includes a block map-
ping table 525.

Data control system 510 comprises any system or collec-
tion of systems capable of executing DC module 515 to
identify qualified blocks in data volume 520 and to respon-
sively generate a list of the identified qualified blocks. Data
control system 510 may be a microprocessor, an application
specific integrated circuit, a general purpose computer, a
server computer, or any combination or variation thereof. DC
module 515 may be program instructions executable by pro-
cessing system. Null block module 514 may be, for example,
a special file (or module) called “/dev/zero.” The “/dev/zero”
file normally resides in Unix-like operating systems. Typi-
cally, the file provides as many null characters (ASCII NUL,
0x00) as are read from it.

Data volume 520 may be any storage volume capable of
storing a volume of data, wherein the volume of data com-
prises a plurality of data blocks. For example, data volume
520 may be a virtual disk file. Virtual disk files may be, for
example, VMware images (.vmdk files), VirtualBox images
(.vdi files), Virtual Hard Disk images (.vhd), and/or other
image format files, including combinations thereof. In this
case, the virtual disk file includes block mapping table 525.

Block mapping table 525 describes the storage of data in
data volume 520 (e.g., in the virtual disk file). For example,
block mapping table 525 may describe data blocks A, B, C, D,
E, and F and their correspondence with data items or files.
More importantly, the block mapping table may be used to
identify which of the blocks are “live.” As shown in FIG. 5,
data volume 520 includes data blocks A, B, C, D, E, and F.
Qualified blocks B, C, E, and F are those data blocks that are
“live” (i.e., allocated) in data volume 520. The qualified
blocks are shown without shading. Blocks A and D are not
“live,” and thus are shown shaded.

In operation, DC module 515 is implemented to direct data
control system 510 to identify qualified blocks in a data
volume in response to data request 505. For example, data
request 505 may request an entire data volume 520 (i.e., each
of the data blocks in data volume 520). Data control system
510 then generates Q-block list 517 identifying only the
qualified blocks in data volume 520 and uses Q-block list 517
to determine which blocks to request from data volume 520.
Advantageously, data volume 520 receives a request for, and
returns, only the requested (or read) blocks reducing the
amount of data that needs to be accessed from data volume
520.

FIG. 6 illustrates process 600 describing operation of data
control system 510 in data transport environment 500. To
begin, data control system 510 receives a data open request
for a first volume of data having a first plurality of data blocks
(Step 602). In some examples, the data open request may be
afile open request. For example, data control system 510 may
present itself to a data utility (not shown) over a network
(LAN or WAN) as a shared disk. The data utility can then
request to mount or map the drive in order to see information
regarding data volume 520. When mounted or mapped, data
control system 510 may provide a file system view of data
volume 520 and other data volumes (not shown) to the data
utility.

Data control system 510 then identifies qualified blocks of
the first plurality of data blocks (604). The qualified blocks
comprise data blocks that are live blocks. For example,
responsive to receiving the data open request, data control
system 510 may access block mapping table 525 which
describes the storage of the data volume 520. Block mapping
table 525 describes data blocks A, B, C, D, E, and F and their

20

30

35

40

45

60

8

correspondence with data items or files. More importantly,
the block mapping table is used to identify which of the
blocks are “live.” In this example, data blocks B, C, E, and F
are “live” data blocks. Those skilled in the art will appreciate
that identifying the liveliness of the data blocks may also
require access to file system metadata in a guest O/S (dis-
cussed in more detail with respect to FIG. 13).

Data control system 510 filters the plurality of data blocks
to construct a list of qualified blocks (Step 606). For example,
data blocks A and D are not “live,” and thus are filtered out.
Once the list of qualified blocks is constructed or generated,
data control system 510 reads the list of qualified blocks from
the first volume of data (Step 608). In this example, data
control system 510 requests or reads qualified blocks B, C, E,
and F using the constructed qualified-block list 517.

Data control system 510 then reads the remaining blocks
(i.e., the non-qualified blocks) from null block module 514
(Step 610). As discussed above, null block module 514 may
be a “/dev/zero” file that provides as many null characters
(ASCII NUL, 0x00) as are read from it. In this example, the
remaining or non-qualified blocks A and D are read from
/dev/zero file. Lastly, data control system 510 transfers a
second volume of data comprising the qualified blocks
received from data volume 520 and the null blocks provide by
the null block module 514 (Step 612).

FIG. 7 illustrates an embodiment wherein the data control
system is embedded in a virtual system environment 700. In
this example, data control module 750 operates to identify
qualified blocks in a data volume in response to a data request.
Virtual system environment 700 includes processing system
701, and storage system 703. Hypervisor 705 runs on storage
system 703. Virtual disk files 719 and 729 and DC module
750 run on hypervisor 705. As shown, DC module 750 runs
on hypervisor 705, however in some embodiments, DC mod-
ule 750 may run directly on storage system 703, on another
hypervisor (not shown) running on storage system 703, and/
or on another storage system (not shown). Although not
shown in this example, those skilled in the art will appreciate
that in some embodiments DC module 750 may run on stor-
age systems outside of virtual system environment 700.

Hypervisor 705 keeps track of those data blocks that have
changed using a changed block list 704. Changed block list
704 describes the blocks that have changed in virtual disk files
719 and 729. In some example, hypervisor 705 generates
changed block list 704. Those skilled in the art will appreciate
that changed block list 704 may alternatively or additionally
be generated by any entity within virtual machine 709 (such
as guest operating system 713), processing system 701, and/
or storage system 703. Moreover, changed block list 704 may
be generated by replication software, continuous data protec-
tion (CDP) software, or virtual disk change block tracking
software running on virtual machine 709, hypervisor 705, or
processing system 701.

Virtual disk files 719 and 729 may be, for example,
VMWare images (.vmdk files), VirtualBox images (.vdi
files), Virtual Hard Disk images (.vhd), and/or other image
format files, including combinations thereof. Virtual disk files
719 and 729 include block mapping tables. Block mapping
table 720 describes the storage of the data volume in virtual
disk file 719. For example, block mapping table 720 may
describe the correspondence between data items (D1, D2, and
D3) onvirtual storage volume 716 and underlying virtual disk
file 719. More importantly, the block mapping table may be
used to identify which of the blocks are “live.”

As discussed, hypervisor 705 includes virtual machines
represented by v-disk files 719 and 729. In particular, v-disk
file 719 represents virtual machine 709. Virtual machine 709

US 9,183,130 B2

9

includes guest operating system 713 and virtual hardware
715. Guest operating system 713 includes metadata 712. Vir-
tual hardware 715 includes virtual storage volume 716, vir-
tual processor 717, and virtual peripheral 718.

In operation, processing system 701, executing software
including DC module 750, receives a request for a volume of
data having a plurality of data blocks. In this example pro-
cessing system 701 receives a request for v-disk 719. As
shown, v-disk 719 comprises data blocks A, B, C, and D.
Processing system 701 executing DC module 750 then iden-
tifies qualified blocks of the plurality of data blocks in v-disk
719. In this example, the qualified blocks are those data
blocks that are live. However, in other examples, the qualified
blocks may be data blocks that are both live and that have
changed. Other criteria for identifying qualified blocks are
also possible.

Processing system 701 executing DC module 750 subse-
quently filters the plurality of data blocks to construct
Q-block list 751 identifying the qualified blocks to be read. In
this example, Q-block list 751 includes qualified blocks C and
D. Processing system 701 executing DC module 750 then
reads the qualified blocks based on the Q-block list 751 from
v-disk 719. As discussed, accessing the underlying contents
of a storage volume (v-disk 719) can be very resource inten-
sive, reducing the performance of a virtual machine and other
operations within a virtual machine environment. Advanta-
geously, in this example, only blocks C and D need to be read
from v-disk 719.

In order to return a full v-disk, as typically requested,
processing system 701, executing DC module 750, reads the
remaining blocks (i.e., the non-qualified blocks) froma “/dev/
zero” file that provides as many null characters (ASCII NUL,
0x00) as are read from it. In this example, the remaining or
non-qualified blocks A and B are read from the /dev/zero file.
Lastly, processing system 701 executing DC module 750
transfers a second v-disk (in response to the request for v-disk
719) comprising the qualified blocks received from data vol-
ume 520 and the null blocks provided by the “/dev/zero” file.

FIGS. 8 through 12 describe techniques for reducing stor-
age [/O when performing tasks such as backup, replication, or
migration of virtual machine data. By leveraging these meth-
ods, data systems can alleviate unnecessary reads from a data
volume and read only data blocks required to perform the
required tasks. More specifically, the number of blocks
involved in a primary operation may be reduced by determin-
ing a status of each corresponding data item and executing a
secondary operation on a subset of the plurality of data items.
In this manner, the number of data blocks read from the data
volume is limited to active (i.e., non-deleted) blocks in the
primary storage volume.

FIG. 8 illustrates data control system 810 in data storage
environment 800. Data storage environment 800 includes
instruction 805, data control system 810, and storage envi-
ronment 820. Storage environment 820 includes primary
storage volume 821 and secondary storage volume 822. Data
control system 810 includes DC module 815.

Data control system 810 comprises any system or collec-
tion of systems capable of executing DC module 815 to direct
data control system to operate as described herein. Data con-
trol system 810 may be a microprocessor, an application
specific integrated circuit, a general purpose computer, a
server computer, or any combination or variation thereof. DC
module 815 may be program instructions executable by pro-
cessing system.

Storage environment 820 comprises any system of collec-
tion of systems that includes one or more storage volumes. As
discussed, storage environment 820 includes primary storage

5

10

15

20

25

30

35

40

45

50

55

60

65

10

volume 821 and secondary storage volume 822. Primary and
secondary storage volumes 821 and 822, respectively, may be
any storage volumes capable of storing volumes of data.
Primary storage volume 821 comprises blocks A, B, C, D, E,
and F. One or more of blocks A, B, C, D, E, and F may
comprise secondary storage volume 822. In this example,
blocks A, B, C, D, E, and F comprise secondary storage
volume 822. Secondary storage volume 822 comprises data
items D1, D2, D3, D4, D5, and D6. Data items data items D1,
D2, D3, D4, D5, and D6 comprise the volume of data in
secondary storage volume 822. For simplicity, in this
example each data item corresponds to a single block. How-
ever, those skilled in the art will appreciate that a data item
may correspond to more than one block. Likewise, in some
cases, multiple data blocks correspond to a single block.

A block mapping table (not shown for simplicity) may be
used by storage environment 820 to describe the relationship
between primary storage volume 821 and secondary storage
volume 822. In this example, block A of primary storage
volume 821 corresponds to dataitem D1 of secondary storage
volume 822, block B corresponds to data item D2, and so on.

In operation, data control system 810 receives instruction
805 to perform a primary operation on primary storage vol-
ume 821 and responsively reduces the number of allocated or
“live” blocks in primary storage volume 821. The reduction
of blocks occurs as a result of the deletion of corresponding
data items in secondary storage volume 822. For example,
data items D1 and D4 are shown shaded because they repre-
sent data items that are not “live” or allocated. Unallocated
data items may comprise system files such as, for example,
cache files, ghost files, and swap files. Advantageously,
reducing the number of allocated or “live” blocks in primary
storage volume 821 may result in fewer blocks needing to
read in order to complete the primary operation on primary
storage volume 821.

FIG. 9 illustrates process 900 describing operation of data
control system 810 in data transport environment 800. To
begin, data control system 810 receives instruction 805 (Step
902). In response to the instruction, DC module 815 is imple-
mented to direct data control system 810 to initiate a primary
operation on primary storage volume 821. As discussed, pri-
mary storage volume 821 comprises a plurality of blocks
corresponding to a plurality of data items in secondary stor-
age volume 822. The primary operation may be, for example,
a request to read primary storage volume 821.

In response to the instruction to initiate the primary opera-
tion, DC module 815 is implemented to direct data control
system 810 to reduce the plurality of blocks involved in the
primary operation by determining a status of each of the
plurality of data items and executing a secondary operation on
each of a subset of the plurality of data items (Step 904). For
example, data control system 810 may determine the liveli-
ness status of each of the plurality of data items by accessing
metadata (not shown) associated with secondary storage vol-
ume 822. The secondary operation may be, for example, an
operation to delete the subset of the plurality of items that are
not live or unallocated. In this example, data control system
810 directs storage environment 820 to delete data items D1
and D4 from secondary storage volume 822 resulting in the
deletion of blocks A and D, respectively, from primary stor-
age volume 821.

FIG. 10 illustrates data control system 1010 in data storage
environment 1000 for accessing elements and/or contents of
virtual system environment 1020. Data storage environment
1000 includes data control system 1010, virtual system envi-
ronment 1020, and data utility 1040. Data utility 1040 is in

US 9,183,130 B2

11

communication with data control system 1010. Data control
system 1010 is in communication with virtual system envi-
ronment 1020.

Data control system 1010 comprises any system or collec-
tion of systems capable of executing a DC module (not
shown) to direct data control system 1010 to operate as
described herein. Data control system 1010 may be a micro-
processor, an application specific integrated circuit, a general
purpose computer, a server computer, or any combination or
variation thereof. DC module may be program instructions
executable by a processing system on data control system
1010. In this example, data identification system 1010 is
shown outside virtual system environment 1020. However,
those skilled in the art will appreciate that in some embodi-
ments, data identification system 1010 may be located within
virtual system environment 1020.

Virtual system environment 1020 comprises real machine
1021. Real machine 1021 may be may be any computer
system, custom hardware, or other device. Real machine
1021 includes a storage system for storing software, and may
retrieve and execute software from the storage system. The
storage system could include a computer-readable medium
such as a disk, tape, integrated circuit, server, or some other
memory device, and also may be distributed among multiple
memory devices. Each real machine 1021 acts as a host
machine. In this example, one host machine is shown for
simplicity. Those skilled in the art will appreciate that any
number of host machines may be included in virtual system
environment 1020. Real machine 1021 comprises hypervisor
1022. Hypervisors allow multiple operating systems to run
concurrently on real machine 1021 (i.e., the host machine). In
this example a single hypervisor (i.e., hypervisor 1022) is
shown for simplicity. Those skilled in the art will appreciate
that more hypervisors may be present on each real machine
1021.

As shown, hypervisor 1022 includes a single virtual disk
file 1023 for simplicity. Those skilled in the art will appreciate
that more than one virtual disk file may be present on each
hypervisor. Virtual disk file 1023 may be, for example,
VMWare images (.vmdk files), VirtualBox images (.vdi
files), Virtual Hard Disk images (.vhd), and/or other image
format files, including combinations thereof. Virtual disk file
1023 comprises a plurality of blocks A-F which together
comprise one or more secondary storage volumes. In this
example, blocks A-C comprise virtual drive 1024X and
blocks D-F comprise virtual drive 1024Y. Virtual drive
1024X comprises a plurality of data items D1-D3. Likewise,
virtual drive 1024Y comprises a plurality of data items
D4-D6. As discussed, the data items may be files on the
virtual drives such as, for example, cache files, ghost files,
swap files, operating system files, regular files, and the like.

Typically, virtual disk file 1023 also includes a block map-
ping table. The block mapping table describes the storage on
virtual disk file 1023. For example, the block mapping table
may describe the correspondence between data items D1-D6
on virtual disk 1024X and 1024Y and the underlying virtual
disk file 1023.

Data utility may 1040 may comprise any of a variety of
applications or appliances. For example, data utility 1040
may be compliance software, security software, backup soft-
ware, log analytics software, replication software, and/or
patch management software.

In operation, data control system 1010 may first present
itself to data utility 1040 over a network (LAN or WAN) as a
shared disk. For example, data utility 1040 may see “P:\” (or
a P-DRIVE). Data utility 1040 can then request to mount or
map the P-DRIVE. In this example, in response to receiving

20

25

30

35

40

45

55

12

the request to mount, data identification system 610 identifies
processing elements, virtual processing elements, virtual
storage elements, and contents of virtual storage elements and
generates a file system view comprising the identified ele-
ments arranged in a hierarchical order. In this way, data con-
trol system 1010 emulates a physical drive by allowing the
data utility to mount or map a drive to the elements and
contents of storage environment 1020.

Once mounted or mapped, data control system 1010 pro-
vides the file system view to data utility 1040. Data utility
may then access request access to the contents of virtual
system environment 1020.

FIG. 11 illustrates process 1100 describing operation of
data control system 1010 in virtual system environment 1000.
More specifically, this example illustrates triggering pre-pro-
cessing scripts in data control system 1010 to perform a series
of operations to reduce the number of blocks that need to be
read from virtual disk file 1023.

Those skilled in the art will appreciate that it is often
necessary to do explicit operations on live data sources (e.g.,
virtual disk files in a virtual system environment) prior to
accessing the data sources (e.g., for backup or other opera-
tions) in order to guarantee data consistency. In some cases, a
live data source may be put into logging mode prior to copy-
ing the contents of the data source during the backup or other
operation. Once the backup or other operation is complete,
the data source must then be taken out of logging mode so that
the log can be merged back into the database.

Typically, a data utility 1040 contains call out points that
invoke pre- and post-processing scripts. These scripts are
explicit operations controlled by data utility 1040. A pre-
processing script is invoked prior to copying the data and a
post-processing script is invoked after copying the data. How-
ever, rather than embedding the commands for invoking the
pre- and post-processing scripts and the scripts themselves
into the backup software, these commands and scripts can be
embedded into data control system 1010. In this way, the
pre-processing scripts can be invoked or triggered based on
file open calls and post-processing scripts can be invoked or
triggered based on file release calls. By embedding com-
mands and scripts into a data control system, data utilities do
not need to be modified for each data source that requires data
consistency and content generation operations.

To begin, data control system 1010 receives a request to
open a virtual disk file (Step 1102). In some examples, the
data open request may be a file open request. For example,
data control system 1010 may present itself to a data utility
(not shown) over a network (LAN or WAN) as a shared disk.
The data utility 1040 may then request to mount or map the
drive in order to see information in virtual system environ-
ment 1020. When mounted or mapped, data control system
1010 may provides the file system view of virtual system
environment 1020 to the data utility.

The request to open a virtual disk file may trigger one or
more pre-processing scripts. For example, upon being pre-
sented the file system view including virtual disk file 1023,
data utility 1040 transfers a request to open virtual disk file
1023. As discussed, the request to open a virtual disk file may
be a request to read the contents of virtual disk file 1023. In
this example, pre-processing scripts are triggered when data
control system 1010 receives the virtual disk file open
request. The pre-processing scripts direct data control system
1010 to open the virtual disk file and identify non-live data
items of the plurality of data items on the virtual drives (Step
1104).

In this example, non-live data items are shown shaded.
Data item D3 on virtual drive 1024X and data item D4 on

US 9,183,130 B2

13

virtual drive 1024Y are non-live data items. As discussed,
these non-live data items may be, for example, cache files,
ghost files, or swap files. The liveliness of the data items may
be determined by accessing the metadata in a guest operating
system. This is discussed in more detail with respect to FIG.
12.

Once the non-live data items are identified, data control
system 1010 deletes the identified non-live data items in
virtual drives 1024X and 1024Y and closes the virtual disk
file to flush changes (Step 1106). Those skilled in the art will
appreciate that deletion of the data items results in deletion of
corresponding blocks in virtual disk file 1023. As discussed,
the data source must be taken out of logging mode so that the
log can be merged back into the database—resulting in the
flush.

The pre-processing scripts then direct data control system
1010 to open virtual disk file 1023 again and read the active or
“live” blocks (Step 1108) and transfer the active blocks to the
data utility (Step 1110). When completed, data utility 1040
may transfer a file release call to data control system 1010
triggering the post-processing scripts which closes the virtual
disk file and flushes the changes, if any.

FIG. 12 illustrates an embodiment wherein the data control
system is embedded in a virtual system environment 1200. In
this example, data control module 1250 operates to identify
and delete non-live data items in a secondary storage volume
in response to a data request. Virtual system environment
1200 includes processing system 1201, and storage system
1203. Hypervisor 1205 runs on storage system 1203. Virtual
disk files 1219 and 1229 and DC module 1250 run on hyper-
visor 1205. As shown, DC module 1250 runs on hypervisor
1205. However, in some embodiments, DC module 1250 may
run directly on storage system 1203, on another hypervisor
(not shown) running on storage system 1203, and/or on
another storage system (not shown). Although not shown in
this example, those skilled in the art will appreciate that in
some embodiments DC module 1250 may run on storage
systems outside of virtual system environment 1200.

Hypervisor 1205 keeps track of those data blocks that have
changed using a changed block list 1204. Changed block list
1204 describes the blocks that have changed in virtual disk
files 1219 and 1229. In some example, hypervisor 1205 gen-
erates changed block list 1204. Those skilled in the art will
appreciate that changed block list 1204 may alternatively or
additionally be generated by any entity within virtual
machine 1209 (such as guest operating system 1213), pro-
cessing system 1201, and/or storage system 1203. Moreover,
changed block list 1204 may be generated by replication
software, continuous data protection (CDP) software, or vir-
tual disk change block tracking software running on virtual
machine 1209, hypervisor 1205, or processing system 1201.

Virtual disk files 1219 and 1229 may be, for example,
VMWare images (.vmdk files), VirtualBox images (.vdi
files), Virtual Hard Disk images (.vhd), and/or other image
format files, including combinations thereof. Virtual disk files
1219 and 1229 include block mapping tables. Block mapping
table 1220 describes the storage of the data volume in virtual
disk file 1219. For example, block mapping table 1220 may
describe the correspondence between data items (D1, D2, and
D3) on virtual storage volume 1216 and underlying virtual
disk file 1219.

As discussed, hypervisor 1205 includes virtual machines
represented by v-disk files 1219 and 1229. In particular,
v-disk file 1219 represents virtual machine 1209. Virtual
machine 1209 includes guest operating system 1213 and vir-
tual hardware 1215. Guest operating system 1213 includes

20

25

35

40

45

14

metadata 1212. Virtual hardware 1215 includes virtual stor-
age volume 1216, virtual processor 1217, and virtual periph-
eral 1218.

In operation, processing system 1201, executing software
including DC module 1250, receives a request for a volume of
data having a plurality of data blocks. In this example pro-
cessing system 1201 receives a request for v-disk 1219. As
shown, v-disk 1219 comprises data blocks A, B, C, and D.
Processing system 1201 executing DC module 1250 opens
the v-disk 1219 and accesses the guest O/S 1213 and/or
metadata 1212 to determine which data items are non-live. In
this example, data item D1 is shown shaded and thus, is
non-live. Data item D1 is subsequently deleted and v-disk
1219 closed. Closing v-disk 1219 flushes the deleted data
item D1, and thus blocks A and B which correspond to data
item D1 are also deleted. As discussed, block mapping table
1220 identifies which blocks correspond to which data items
in v-disk file 1219.

Processing system 1201, executing software including DC
module 1250, then re-opens v-disk file 1219 and reads the
active or live blocks. In this case, because blocks A and B have
been deleted, only blocks C and D are read. Advantageously,
the number of blocks needed to be read and transferred from
virtual storage system 1200 is reduced.

FIG. 13 illustrates data control system 1300. Data control
system 1300 provides an example of data control system 100
of FIG. 1, data control system 300 of FIG. 3, data control
system 510 of FIG. 5, data control 810 of FIG. 8, data control
system 1010 of FIG. 10, although systems 100, 300,510, 810,
and 1010 may use alternative configurations. Data control
system 1300 includes processing system 1313, user interface
1312, and communication interface 1311. User interface
1312 may be excluded in some embodiments. Processing
system 1313 includes storage system 1314. Storage system
1314 stores software 1315. Processing system 1313 is linked
to user interface 1312 and communication interface 1311.
Software 1315 includes data control (DC) module 1316. DC
module 1316 provides an example of DC module 102 of FIG.
1, DC module 350 of FIG. 3, DC module 515 of FIG. 5, DC
module 750 of FIG. 7, DC module 815 of FIG. 8, and DC
module 1250 of FIG. 12, although DC modules 102, 350, 515,
750, 815, and 1250 may use alternative configurations.

Data control system 1300 could be comprised of a pro-
grammed general-purpose computer, although those skilled
in the art will appreciate that programmable or special pur-
pose circuitry and equipment may be used. Data control sys-
tem 1300 may be distributed among multiple devices that
together comprise elements 1311-1315.

Communication interface 1311 is configured to communi-
cate with a storage environment including storage environ-
ment 820 and virtual system environment 1020. Additionally,
communication interface 1311 may be configured to commu-
nicate with one or more data utility or other application which
may, for example, mount or map data control system 1300 to
access a storage environment.

Communication interface 1311 could comprise a network
interface, modem, port, transceiver, or some other communi-
cation device. Communication interface 1311 may be distrib-
uted among multiple communication devices. Processing
system 1313 could comprise a computer microprocessor,
logic circuit, or some other processing device. Processing
system 1313 may be distributed among multiple processing
devices.

User interface 1312 could comprise a keyboard, mouse,
voice recognition interface, microphone and speakers,
graphical display, touch screen, or some other type of user
device. User interface 1312 is configured to communicate

US 9,183,130 B2

15

with a system operator. As discussed, user interface 1312 may
be omitted in some embodiments.

Storage system 1314 could comprise a disk, tape, inte-
grated circuit, server, or some other memory device. Storage
system 1314 may be distributed among multiple memory
devices. Storage system 1314 includes software 1315. Soft-
ware 1315 may include an operating system, logs, utilities,
drivers, networking software, and other software typically
loaded onto a computer system. Software 1315 could contain
an application program, firmware, or some other form of
computer-readable processing instructions. Software 1315
also includes DC module 1316. When executed by processing
system 1313, DC module 1316 directs data control system
1300 to operate as described herein.

In some examples, DC module 1316 instructs processing
system 1313 to direct communication interface 1311 to
receive a request to retrieve data from a primary storage
volume that includes a secondary storage volume. DC mod-
ule 1316 further instructs processing system 1313 to direct
storage system 1314 to store the primary storage volume that
includes the secondary storage volume. DC module 1316
directs processing system 1313 to identify changed segments
of'a plurality of segments in the primary storage volume, and
identify allocated segments of the changed segments. DC
module 1316 instructs processing system 1313 to direct com-
munication interface 1311 to transfer the allocated segments
in response to the request.

In some examples, DC module 1316 instructs processing
system 1313 to, in response to the request to retrieve the data
from the primary storage volume, determine a subset of the
plurality of data items that are not live based on the allocated
segments of the changed segments identified in the primary
storage volume, and execute an operation on the subset of the
data items to reduce an amount of the plurality of blocks
involved in retrieving the data. In some examples, in order to
execute the operation on the subset of the data items DC
module 1316 instructs processing system 1313 to delete each
data item of the subset of the data items.

In some examples, DC module 1316 executed by process-
ing system 1313 identifies qualified blocks of a plurality of
data blocks responsive to receiving a request for a volume of
data having a plurality of data blocks, filters the plurality of
data blocks to construct a list of qualified blocks, and reads
the list of qualified blocks from the first volume of data based
on the list of qualified blocks.

In some examples, DC module 1316 executed by process-
ing system 1313 may also read the remaining blocks (i.e., the
non-qualified blocks) from a null block module such as, for
example, a “/dev/zero” file that provides as many null char-
acters (ASCII NUL, 0x00) as are read from it. Further, in
some examples DC module 1316 executed by processing
system 1313 could direct data control system 1300 to transfer
a second volume of data comprising the qualified blocks read
from the data volume and the null blocks provided from the
null block module.

The above description and associated figures teach the best
mode ofthe invention. The following claims specify the scope
of'the invention. Note that some aspects of the best mode may
not fall within the scope of the invention as specified by the
claims. Those skilled in the art will appreciate that the fea-
tures described above can be combined in various ways to
form multiple variations of the invention. As a result, the
invention is not limited to the specific embodiments described
above, but only by the following claims and their equivalents.

10

15

20

30

40

45

50

60

65

16

What is claimed is:

1. A method of operating a data control system, the method
comprising:

receiving a request to retrieve data from a primary storage
volume;

identifying changed segments of a plurality of segments in
the primary storage volume;

identifying allocated segments of the changed segments;

determining a subset of the allocated segments of the
changed segments that are not in use;

executing an operation on the subset of the allocated seg-
ments of the changed segments to reduce an amount of
the data retrieved from the primary storage volume; and

transferring the allocated segments in response to the
request.

2. The method of claim 1 further comprising generating a
list of qualified blocks based on the allocated segments of the
changed segments identified in the primary storage volume.

3. The method of claim 2 further comprising reading a
plurality of data blocks from the primary storage volume
based on the list of qualified blocks.

4. The method of claim 1 wherein the primary storage
volume comprises a plurality of blocks corresponding to a
plurality of data items in a secondary storage volume within
the primary storage volume.

5. The method of claim 4 further comprising:

determining a subset of the plurality of data items that are
not live based on the allocated segments of the changed
segments identified in the primary storage volume; and

executing an operation on the subset of the data items to
reduce an amount of the plurality of blocks involved in
retrieving the data.

6. The method of claim 5 wherein executing the operation
on the subset of the data items to reduce the amount of the
plurality of blocks involved in retrieving the data comprises
deleting each data item of the subset of the data items.

7. The method of claim 6 further comprising flushing
changes to the secondary storage volume after deleting each
data item of the subset of the data items.

8. The method of claim 1 wherein the primary storage
volume includes a secondary storage volume stored thereon,
and wherein identifying the allocated segments of the
changed segments comprises identifying the allocated seg-
ments of the changed segments based on an allocation status
of'a plurality of data items contained in the secondary storage
volume, wherein the plurality of data items correspond to the
changed segments.

9. A data control system, the system comprising:

a communication interface configured to receive a request
to retrieve data from a primary storage volume that
includes a secondary storage volume;

a storage system configured to store the primary storage
volume that includes the secondary storage volume;

a processing system configured to identify changed seg-
ments of a plurality of segments in the primary storage
volume, and identify allocated segments of the changed
segments, determine a subset of the allocated segments
of the changed segments that are not in use, and execute
an operation on the subset of the allocated segments of
the changed segments to reduce an amount of the data
retrieved from the primary storage volume; and

the communication interface further configured to transfer
the allocated segments in response to the request.

10. The system of claim 9 wherein the processing system is

further configured to generate a list of qualified blocks based
on the allocated segments of the changed segments identified

US 9,183,130 B2

17

in the primary storage volume, and read a plurality of data
blocks from the primary storage volume based on the list of
qualified blocks.

11. The system of claim 9 wherein the primary storage
volume comprises a plurality of blocks corresponding to a
plurality of data items in a secondary storage volume within
the primary storage volume.

12. The system of claim 11 wherein the processing system
is further configured to determine a subset of the plurality of
data items that are not live based on the allocated segments of
the changed segments identified in the primary storage vol-
ume, and execute an operation on the subset of the data items
to reduce an amount of the plurality of blocks involved in
retrieving the data.

13. The system of claim 12 wherein the processing system
configured to execute the operation on the subset of the data
items to reduce the amount of the plurality of blocks involved
in retrieving the data comprises the processing system con-
figured to delete each data item of the subset of the data items.

14. The system of claim 9 wherein the processing system
configured to identity the allocated segments of the changed
segments comprises the processing system configured to
identify the allocated segments of the changed segments
based on an allocation status of a plurality of data items
contained in the secondary storage volume, wherein the plu-
rality of data items correspond to the changed segments.

15. One or more non-transitory computer-readable storage
media having program instructions stored thereon for oper-
ating a data control system, wherein the program instructions,
when executed by the data control system, direct the data
control system to:

receive a request to retrieve data from a primary storage

volume;

identify changed segments of a plurality of segments in the

primary storage volume;

identify allocated segments of the changed segments;

determine a subset of the allocated segments of the

changed segments that are not in use;

execute an operation on the subset of the allocated seg-

ments of the changed segments to reduce an amount of
the data retrieved from the primary storage volume; and
transfer the allocated segments in response to the request.

25

30

35

18

16. The one or more non-transitory computer-readable
storage media of claim 15 wherein the program instructions
further direct the data control system to generate a list of
qualified blocks based on the allocated segments of the
changed segments identified in the primary storage volume,
and read a plurality of data blocks from the primary storage
volume based on the list of qualified blocks.

17. The one or more non-transitory computer-readable
storage media of claim 15 wherein the primary storage vol-
ume comprises a plurality of blocks corresponding to a plu-
rality of data items in a secondary storage volume within the
primary storage volume.

18. The one or more non-transitory computer-readable
storage media of claim 17 wherein the program instructions
further direct the data control system to determine a subset of
the plurality of data items that are not live based on the
allocated segments of the changed segments identified in the
primary storage volume, and execute an operation on the
subset of the data items to reduce an amount of the plurality of
blocks involved in retrieving the data.

19. The one or more non-transitory computer-readable
storage media of claim 18 wherein the program instructions,
in order to direct the data control system to execute the opera-
tion on the subset of the data items to reduce the amount of the
plurality of blocks involved inretrieving the data, instructs the
data control system to delete each data item of the subset of
the data items.

20. The one or more non-transitory computer-readable
storage media of claim 19 wherein the program instructions,
in order to direct the data control system to identify the
allocated segments of the changed segments, instructs the
data control system to identify the allocated segments of the
changed segments based on an allocation status of a plurality
of data items contained in the secondary storage volume,
wherein the plurality of data items correspond to the changed
segments.

